skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, Ximing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data limitations often challenge the reliability of water quality models, especially in intensively managed watersheds. While numerous studies report successful hydrological model setup and calibration, few have addressed in detail the data challenges for multisite and multivariable model calibration to an intensively managed watershed. In this study, we address some of these challenges based on our reflective experience calibrating the Soil and Water Assessment Tool (SWAT) to the Upper Sangamon River Watershed in central Illinois based on daily flow, annual crop yield, and monthly sediment, nitrate, and total phosphorus loads. We highlight some challenges in SWAT calibration processes due to data errors and inconsistencies, and insufficient precipitation and water quality observations. Following, we demonstrate the merits of additional weather and water quality observations that could help reduce input uncertainties, and we provide suggestions for selecting appropriate observations for the model calibration. After dealing with the data issues, we show that the SWAT model could be calibrated with acceptable results for the case study watershed. 
    more » « less
  2. Abstract Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use. 
    more » « less
  3. Abstract Efforts to reduce riverine phosphorus (P) loads have not been as fruitful as expected or hoped. One reason for the failure of these efforts appears to be that models used for watershed P management have understated and misrepresented the role of in‐stream processes in shaping watershed P export. Here, we update the latest release of the Soil and Water Assessment Tool (SWAT+), a widely used watershed management model, to better represent in‐stream P retention and remobilization (SWAT+P.R&R). We add new streambed pools where P is stored and tracked, and we incorporate three new processes driving in‐stream P dynamics: (a) deposition and resuspension of sediment‐associated P, (b) diffusion of dissolved P between the water column and streambed, and (c) adsorption and desorption of mineral P. The objective of this modeling work is to provide a diagnostic tool that enables researchers to challenge existing assumptions regarding how watersheds store, transform, and transport P. Here, in a first diagnostic analysis, SWAT+P.R&R helps reconcile in‐stream P retention theory (that P is retained at low flows and remobilized at high flows) and a discordant data set in our validation watershed. SWAT+P.R&R results (a) clarify that the theorized relationship between P retention and flow is only valid (for this point‐source affected testbed, at least) at the temporal scale of a single rising‐or‐falling hydrograph limb and (b) illustrate that hysteresis obscures the relationship at longer temporal scales. Future work using SWAT+P.R&R could further challenge assumptions regarding timescales of in‐stream P legacies and sources of P load variability. 
    more » « less
  4. null (Ed.)